connection with **17,19** the Cook-Weiss pathway was reestablished. This control experiment proceeded smoothly to deliver **18** in 70% yield.20

Other applications of medium-ring energetics to the control of chemical reactions can easily be envisioned. Recently, this principle was deployed so as to permit observation of the first reversible oxy-Cope rearrangement.²¹

Experimental Section

Tetramethyl *(3R,3aR* **,125)-2,3a,4,5,6,9,10,11-Octahydro-2-oxocyclodeca[a]pentalene-l,3,3a,l2(3H)-tetracarboxylate (8). Dimethyl 1,3-acetonedicarboxylate (3.76 g, 21.2 mmol) waa** dissolved in aqueuos NaHCO₃ solution (0.98 g, 11.7 mmol, 70 mL **of water) and 6 (1.76 6, 10.6 mmol) was introduced followed by enough methanol to achieve dissolution (70 mL). After 3 days of stirring at rt, the homogeneous solution was cooled in ice and acidified to pH 1 with dilute HC1. The resultant precipitate was recrystallized from methanol to give large colorless prisms of 8** $(2.07 \text{ g}, 41\%)$: mp 161-163 °C; IR $(\text{CHCI}_3, \text{ cm}^{-1})$ 1755, 1680; ¹H **NMR (300 MHz,CDC13)** *b* **5.38-5.25 (m, 2 H), 4.58** (s, **1 H), 3.84 (s,3 H), 3.80 (s,3 H), 3.642 (s,3 H), 3.639 (s,3 H), 3.46** (s, **1 H), 2.52-2.48 (br m, 3 H), 2.15-2.05 (br m, 1 H), 1.84 (m, 5 H), 1.53** (m, 2 H), 1.38 (m, 1 H); ¹³C NMR (75 MHz, CDCl₃) ppm 191.4, **181.8, 169.2, 167.4, 166.6, 161.4, 140.7, 138.2, 130.0, 129.5, 127.3, 67.4, 65.3, 52.8, 52.5, 52.4, 52.2, 24.7, 24.6, 24.3, 24.1, 24.0, 22.8; MS** *m/z* **(M+) calcd 460.1733, obsd 460.1728.**

Anal. Calcd for C₂₄H₂₈O₉: C, 62.59; H, 6.13. Found: C, 62.55; **H, 6.11.**

Acknowledgment. This work was supported by the National Science Foundation.

Registry No. 2,1830-54-2; 6,99172-44-8; 8, 141119-96-2; 17, 141119-97-3; 18, 141119-98-4.

Supplementary Material Available: Crystallographic details, bond lengths, bond angles, torsion angles, positional parameters, anisotropic thermal parameters, and calculated positional **parameters for the hydrogen atoms of 8 (12 pages). Ordering information is given on any current masthead page.**

of 7,8-diketocyclododecyne prepared according to ref 8. (19) Obtained by controlled catalytic hydrogenation (Hz, Pd-BaSO,)

(20) Underiner, G. E. Unpublished results.

(21) Elmore, S. W.; Paquette, L. A. Tetrahedron Lett. 1991,32,319.

Mechanism of Epoxidation of Vitamin K with Basic Hydrogen Peroxide

Paul Dowd* and Seung Wook Ham

Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

Alan *P.* **Marchand* and Dayananda Rajapaksa**

Department of Chemistry, University of North Texas, Box 5068, Denton, Texas 76203

Received December 26, 1991 (Revised Manuscript Received March 20, 1992)

Introduction

Vitamin K **(1)** has attracted attention because of its function as an obligatory cofactor in enzymic sequences central to blood clotting.^{1,2} In a recent study of the mechanism of action of vitamin K, the role *of* molecular oxygen in the formation of vitamin K oxide **(2)** was explored.2 A mechanism for this reaction **has** been suggested that is supported by the results of parallel **1sO-160** and $18O-18O$ experiments in the oxygen-promoted oxidation of vitamin K hydroquinone and in the corresponding oxidation of the model systems, 2,4-dimethyl-l-naphthol and **2,3,4-trimethyl-l-naphth01.~** Key features of this mechanism include (i) the formation of a dioxetane intermediate and (ii) the possibility that as many as two ¹⁸O atoms are incorporated into vitamin K oxide **(2)** as a result of the molecular oxygen promoted oxidation process.2

Several years ago, Alder and co-workers^{3a} reported that the enedione carbon-carbon double bond in endo-tricy**clo[6.2.1.02~7]undeca-4,9-diene-3,8-dione** (3) can be selectively epoxidized using basic hydrogen peroxide to yield the corresponding exo-4,5-epoxide **4.3btc** One possible mechanism that would account for the formation of 4 is shown in Scheme I as a **1,2-addition/rearrangement** mechanism. This mechanism postulates formation of a dioxetane intermediate **5** and is analogous to the mechanism suggested for the oxygen-promoted oxidation of vitamin K hydroquinone to vitamin K oxide.2 **An** alternative, equally plausible, mechanism for the selective epoxidation of 3 to 4 can be envisioned is also outlined in Scheme I. Rather than proceeding through a dioxetane intermediate, the alternative 1,4-addition mechanism focuses upon initial Michael addition of HOO- to the enedione carbon-carbon double bond, which is activated toward nucleophilic attack by conjugation with the adjacent carbonyl groups.3b

In the present study, we have investigated both the reaction of 3 and of vitamin K with basic H_2O_2 , using $Na^{18}OH/H_2O_2$ and $NaOH/H^{18}O^{-18}OH$ in separate labeling experiments. The results of these experiments unambiguously differentiate between the mechanisms shown in Scheme I.

Results and Discussion

Treatment of vitamin K with H¹⁸O-¹⁸OH and sodium carbonate in either aqueous or anhydrous ethanol resulta in exclusive formation of the '80-labeled epoxide (Scheme 11). This is most readily demonstrated by analysis of the mass spectrum of vitamin K oxide- ^{18}O . In the aqueous ethanol experiments, the molecular ion is observed at *m/z* 468 and the ratio of the *m/z* 468, 469, 470 peaks is 100:33.3:6.9. The calculated values are 100:34.4:6.3.4 The same result was obtained under anhydrous conditions. Thus, the peak at 470 is completely normal in intensity indicating that only one atom of '80 has been incorporated into vitamin K oxide. Analysis of the fragmentation pattern establishes unambiguously that the label is located at the epoxide oxygen.^{2a} Treatment of the ¹⁸O-labeled epoxide with aqueous base resulted in no change in the mass spectral pattern showing that all **the l80** was incor-

⁽¹⁾ For a review of early studies of vitamin K, see: Wagner, A. F.; Folkers, K. Vitamins and Coenzymes; Interscience: New York, 1964; pp **407-434.**

^{(2) (}a) Dowd, P.; Ham, S. W.; Geib, S. J. J. Am. Chem. Soc. 1991, 113, 7734. (b) Ham, S. W.; Dowd, P. J. Am. Chem. Soc. 1990, 112, 1660. (c) Dowd, P.; Ham, S. W. J. Am. Chem. Soc. 1991, 113, 9403. (3) (a) Alder, K.; Flock,

⁽b) See also: Weitz, E.; Scheffer, A. Chem. Ber. 1921, 54, 2327. Bunton,
C. A.; Minkoff, G. J. J. Chem. Soc. 1949, 655. (c) Fieser, L. F.; Campbell,
W. P.; Fry, E. M.; Gates, M. D., Jr. J. Org. Chem. 1939, 61, 3216. For
ot L. F.; Fieser, M. Reagents for Organic Synthesis; Wiley: New York, 1967; **Vol. 1, pp 466-467.**

⁽⁴⁾ Beynon, J. H. *Mass* **Spectrometry** *and* **its Applications** *to* **Organic Chemtstry; Elsevier: Amsterdam, 1960; p 524.**

Scheme I

1,2-Addition and Rearrangement

porated at the epoxide oxygen and none at the carbonyl groups. The carbonyl oxygens of vitamin K oxide readily undergo exchange under such conditions through a hydration-dehydration sequence.

In a parallel study, epoxidations of the dienedione 3 with $H^{18}O^{-18}OH$ and with unlabeled H_2O_2 were performed in the presence of aqueous ethanolic $Na₂CO₃$. The mass spectrum of unlabeled **43** displays its molecular ion (M+) at m/z 190; this peak is shifted to m/z 192 in the mass spectrum of the product formed upon oxidation of 3 with H¹⁸O-¹⁸OH. The mass spectra of both labeled and unlabeled 4 display M^+ + 1 peaks which possess the intensity expected for a C_{11} compound (calcd intensity 12.2% of M⁺, found **11.4%** in unlabeled **4,11.6%** in 180-labeled **4).** No increase in the intensity of the M^+ + 2 peak was observed in 180-labeled **4** (calcd intensity **1.2%,** found **1.1%)** as compared with that of unlabeled **4** (found **1.6%).**

The results of a control experiment established that oxidation of 3 with H180-180H in (unlabeled) aqueous ethanolic Na₂CO₃ affords 4 with exclusive incorporation of l80 at the epoxide position and with no I80 at the carbonyl positions. Thus, exposure of labeled **4** to aqueous ethanolic Na_2CO_3 at 50 °C for 3 h results in no detectable change in the appearance of the mass spectrum (i.e., the relative intensities of the peaks at *m/z* 190 and **192** remain unchanged). 5 Thus, no exchange of ¹⁶O for ¹⁸O has occurred under these conditions at the carbonyl position in **4,** which is vulnerable to oxygen isotope exchange by base-promoted hydration-dehydration? We conclude that no incorporation of *'80* into the carbonyl oxygens occurred during the epoxidation of 3.

A second control experiment established the tendency of the carbonyl groups to undergo 18 O exchange with the medium. Reaction of 3 with unlabeled H_2O_2 in labeled $(H₂¹⁸O)$ aqueous ethanolic Na₂CO₃ at 50[°]C resulted in complete epoxidation of the starting material within *5* **min.** The product, **4, was** mainly unlabeled epoxide (base peak m/z **190)**; however, a peak at m/z **192** (relative intensity **11.2%)** was **also** observed. The additional **I80** label results from exchange of one of the carbonyl oxygens in **4** with the medim, since excess label was washed out by exchange with (unlabeled) aqueous ethanolic Na_2CO_3 at 50 °C. Thus, after **30-min** reaction time, **an** aliquot was withdrawn and examined by GC/MS; the peak at *m/z* **192** had decreased in intensity to 5.5% of the parent ion $(m/z 190)$. The remaining sample was then stirred at 50 \degree C for 3 h with fresh (unlabeled) aqueous ethanolic $Na₂CO₃$. At the conclusion of this experiment, mass spectral analysis of recovered **4** indicated the complete absence of **l8O** label; the peak at m/z **192** was restored to its normal intensity **(1.2%)** appropriate for the intensity profile of the mass spectral region associated with the base peak at *m/z* **190.**

Summary and Conclusions

A series of experiments with ¹⁸O-labeled H_2O_2 and/or **H,O,** with appropriate controls, indicates that epoxidation of **1** and 3 with basic H180-180H proceeds with incorporation of only one l80 atom into the products **2** and **4.** The results **of** mass spectral analysis attest to a direct Michael attack of HOO- on the enedione carbon-carbon double bond in each substrate **(1** or 3). We conclude that the mechanism of oxidation of vitamin K with basic H_2O_2

⁽⁵⁾ Our determinations of mass spectral peak intensities are precise to ca. 1%.

⁽⁶⁾ Lowry, T. H.; Richardson, K. S. *Mechanism* **and** *Theory in Organic Chemistry,* **3rd ed.; Harper and Row: New York, 1987; pp 662-680.**

follows a pathway fundamentally different from that suggested for oxidation of vitamin K hydroquinone with molecular oxygen. $²$ </sup>

Experimental Section

Melting points are uncorrected. Compound 3 was synthesized by Diels-Alder reaction of cyclopentadiene with p-benzoquinone using a previously published procedure.' The material was recrystallized from hexane to afford bright yellow platelets: mp **78-79** "C (lit.8 mp **77-78** "C). An authentic sample of **4** was prepared using the procedure described by Alder and co-workers.^{3a} Pure **4** was obtained by recrystallization from EtOAc-hexane; this procedure afforded **4** as a colorless microcrystalline solid: mp 118-118.5 °C (lit.^{3a} mp 118 °C). Hydrogen peroxide-¹⁸O₂, purchased from Icon Services, Summitt, NJ, was found by mass spectroscopic analysis to contain 80% ¹⁸O₂ isotopic enrichment.

Gas Chromatography and Mass Spectroscopy. A Hewlett-Packard Model **5890,** Series 11, gas chromatograph (GC) connected directly to a Hewlett-Packard Model **5970** mass spectrometer (MS) was employed in this study. The GC column used was a **12-m x** 0.2-mm i. d. fused **silica** capillary column which contained a film $(0.33-\mu m)$ thickness) of 100% dimethyl polysiloxane (Hewlett-Packard, HP-1). The sample was injected into the GC injection port, whose temperature was maintained at **250** ^oC, while the column temperature was maintained at 80 ^oC. Forty seconds after the sample had been injected into the GC, the column oven was heated rapidly to ita final temperature of **300** ^oC (heating rate ca. 45 °C/min). The detector temperature was set at 280 °C. Oxygen-free helium was used as carrier gas (inlet pressure **7** psig; flow-rate **55** mL/min).

Reaction **of** 3 with Basic **H'80-180H.** To a solution of 3 **(17,** mg, 0.10 mmol) in absolute EtOH $(2 mL)$ was added with stirring $H^{18}O^{-18}OH$ (75 mg, 2.0 mmol) and aqueous 3 M Na₂CO₃ solution **(0.3** mL). The reaction mixture was stirred at **50** "C for **5** min, at which time an aliquot **(0.2** mL) was withdrawn and quenched by the addition of water **(1.0** mL). The resulting mixture was extracted with Et₂O (0.2 mL). To avoid possible oxygen exchange at the carbonyl groups, which might arise by contact with silica gel, the product **was** not purified by column chromatography. Instead, the ether layer was examined directly **by GC/MS analysis.** The GC/MS trace displayed a major peak with retention time **3.25** min, which corresponded to that of authentic **4** and which indicated that the reaction had proceeded to completion. The mass spectrum of the product **(4)** displayed the following peaks, *m/z* (relative intensity): **192** (M+, **loo), 193 (11.6)** and **194 (1.1).** Calcd natural abundance ratio for $C_{11}H_{10}O_3$: M^+ : M^+ + 1: M^+ + **2** = **100:12.2:1.2.**

The remainder of the sample was poured into water **(10** mL) and extracted with Et_2O (3×5 mL). The combined ether extracts were dried over MgSO₄ and filtered, and the filtrate was concentrated in vacuo affording a brown solid **(15** mg). The crude product was purified by chromatography on silica gel **(10** g) by eluting with **1:4** EtOAc-hexane mixed solvent. Pure **4 (11.2** mg, **117-118 °C** (lit.^{3a} mp 118 °C). The ¹H NMR spectrum of this material was identical in all respects with that of authentic **4.**

Vitamin **K** Oxide-¹⁸ O_1 . Vitamin K (50 mg, 0.11 mmol) and H¹⁸O-¹⁸OH (75 mg, 2.10 mmol) in absolute EtOH (2.5 mL) were combined with 3 M aqueous Na₂CO₃ solution (0.3 mL). The resulting mixture was heated with stirring at **75** "C for **1** h. The reaction mixture was poured into water **(10** mL) and extracted with $Et₂O$ (3 \times 10 mL). The combined ether layers were examined by GC-MS. The GC-MS trace contained a peak with retention time **7.9** min whose mass spectrum displayed the following peaks, *m/z* (relative intensity): **468** (M+, **100), 469 (33.3),** and **470 (6.9).** Calcd natural abundance ratio for $C_{31}H_{46}O_3$: M^+ : M^+ + 1: M^+ + **2** = **100:34.4:6.3.**

The combined ether extracts were dried over MgSO₄ and filtered, and the filtrate was concentrated in vacuo, affording a yellow oil **(52.3** mg). The crude product was purified by column chromatography on silica gel **(10** g), eluting with **1:19** EtOAc-hexane mixed solvent. Pure vitamin K oxide **(45.4** mg, 88%) was obtained **as** a colorless oil with spectral properties identical to those of an authentic sample.²

Control Experiments. **1.** Synthesis of **1-180** under **Anhydrous Conditions.** To a mixture of $1 (10 \text{ mg})$ and $90\% \text{ H}_2{}^{18}\text{O}_2$ **(20** pL, Icon Services) in absolute EtOH **(2.5** mL) was added Na2C03 **(20** mg), and the resulting mixture was heated at **60** "C. The progress of the reaction was followed by GC-MS, which indicated that the reaction had proceeded to 50% completion after **1** h. The mass spectrum of the reaction mixture confirmed the presence of vitamin K oxide-180 with ita molecular ion at *m/z* **468,** M+ + **1** peak at *m/z* **469** with relative intensity **34.3,** and M+ $+ 2$ peak at m/z 470 with relative intensity 6.1. Calcd ratio of intensities M^+ : $M + 1$: $M^+ + 2 = 100$:34.3:6.3).

2. Nonexchange **of** Vitamin **K** Oxide-180 with **HzO.** To a solution of vitamin K oxide-¹⁸O (8.8 mg) in absolute EtOH (0.5 mL) was added to a solution of Na₂CO₃ (20 mg) in water (60 μ L). The reaction mixture was stirred at **60** "C for **3** h, at which time the progress of the reaction was checked by GC-MS. The mass **spectrum** revealed no change in the relative intensities of the mass spectral peaks of the reaction product when compared with those of starting material. This result indicates that none of the ^{18}O label contained in the starting vitamin K oxide- ^{18}O , prepared by oxidation of with H180-180H, resides in the carbonyl groups.

3. Nonexchange of $4^{-18}O_1$ with H_2O . To a solution of 1.1 mg (0.0057 mmol) of 4^{-18} O (labeled at the epoxide oxygen by epoxidation of 3 with H180-'80H) in absolute EtOH **(0.1 mL)** was added a solution of Na_2CO_3 (5 mg) in 20 μL of H₂O. The reaction mixture was stirred at *50* "C for **3** h and then checked by GC/MS. The mass spectrum of the product showed no change in the relative intensities of the peaks at *m/z* **190** and **192 as** compared with the corresponding peaks in the mass spectrum of the *stating* material $4^{-18}O₁$.

4. Epoxidation **of** 3 in **H280.** To a solution of 3 **(4.0** *mg,* **0.023** mmol) in absolute EtOH (0.5 mL) was added unlabeled $90\% \text{ H}_2\text{O}_2$ $(15 \mu L,$ excess) and a solution of Na_2CO_3 (25 mg) in 0.1 mL of H280 **[96%** '%-enriched (Icon Services)]. The reaction mixture was stirred at 50 °C for 5 min and then checked by GC/MS. The mass spectrum of the product **4** displayed the following peaks, *mlz* (relative intensity): **190** (M+, **100), 191 (13.3),** and **192 (11.2).** Calcd natural abundance ratio for $C_{11}H_{10}O_3$: M^+ : $M + 1:M^+$ + **2** = **100:12.2:1.2.**

5. Exchange of Carbonyl-Labeled $4^{-18}O_1$ **with** H_2O **. To** a solution of **1.5** mg **(0.0038** mmol) of **4** previously exchanged with H₂¹⁸O (vide supra) in 0.2 mL of absolute EtOH was added a solution of Na_2CO_3 (5 mg, excess) in 20 μL of H_2O . The reaction mixture was stirred at **50** "C for **30** min and then checked by GC/MS. The mass spectrum of the product indicated that the intensity of the peak at *m/z* **192** had become reduced to **5.5%** of the parent ion at m/z 190. The sample was then stirred with the same concentration of freah aqueous **sodium** carbonate solution **(20** pL) at **50** "C for **3** h. The mass spectrum of the product displayed a peak at m/z **192** of normal intensity (1.2%) .

Acknowledgment. This research was generously **sup**ported by a grant from the National Science Foundation. A. P. Marchand thanks the Robert A. Welch Foundation (Grant **B-963)** for financial support.

Tandem Pummerer-Type &arrangement and Nickel-Catalyzed Alkylative Olefination of the Cyclic Dithioacetal S-Oxides of Aromatic Aldehydes with Grignard Reagents

Wen-Lung Cheng and Tien-Yau Luh*

Department of Chemistry, National Taiwan University, Taipei, Taiwan 10764, Republic of China

Received October *1, 1991*

The nickel-catalyzed cross-coupling of various organosulfur compounds with Grignard reagents has been extensively studied.' However, to our surprise, we found

⁽⁷⁾ Marchand, A. 9.; Allen, R. W. *J.* **Org.** *Chem.* **1974, 39, 1596. (8) Albrecht, W. Liebigs** *Ann. Chem.* **1906, 348, 31.**